top of page

PCA

  • Writer: DG
    DG
  • May 24, 2018
  • 1 min read

Updated: Jul 14, 2020


Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. PCA is mostly used as a tool in exploratory data analysis and for making predictive models


Click and try the web Application








Run the Shiny App!!!







Comments


bottom of page